Плюсы
Нуклоны, из которых состоят ядра, обладают относительно малой массой (около 1 а.е.м.), электрический заряд протона положителен, а нейтрон не заряжен. Поэтому, если учитывать только существование электромагнитных и гравитационных сил, ядро будет нестабильно (одноимённо заряженные частицы будут отталкиваться, разрушая ядро, а массы нуклонов недостаточно велики, чтобы гравитация могла противодействовать кулоновскому отталкиванию), что делало бы невозможным существование материи. Из очевидного факта существования материи вытекает, что в модель необходимо добавить третью силу, которую назвали сильным взаимодействием (строго говоря, между нуклонами в ядре действует главным образом не само сильное взаимодействие как таковое, а остаточные ядерные силы, обусловленные сильным взаимодействием). Эта сила должна, в частности, быть очень интенсивной, притягивающей на очень коротких расстояниях (на расстояниях порядка размеров ядра) и отталкивающей на ещё более коротких расстояниях (порядка размеров нуклона), центральной в определённом диапазоне расстояний, зависящей от спина и не зависящей от типа нуклона (нейтроны или протоны). В 1935 году Хидеки Юкава создал первую модель этой новой силы, постулировав существование новой частицы, пиона. Легчайший из мезонов он отвечает за бо́льшую часть потенциала между нуклонами на расстоянии порядка 1 фм. Потенциал Юкавы, который адекватно описывает взаимодействие двух частиц со спинами s_1 и s_2, можно записать в виде:
Минусы
Не указаны